
Verification of the Winnow Algorithm for Error Correction in Quantum Key
Distribution

S. Nicholls1 and T. Foldy-Porto1
1Department of Physics, Yale University

(Dated: 9 April 2019)

In this study, we implement and verify the Winnow error correction algorithm that is presented in “Fast,
efficient error reconciliation for quantum cryptography”, by W. T. Buttler et al.1 Using a pulsed laser, a
variable polarizer, and measurement devices for two non-orthogonal states—as outlined in the B92 protocol
presented by Charles Bennett in 1992—we verified the error correcting statistics that are claimed in the
original Winnow paper.2 Our results were consistent with the theoretical model proposed by Buttler et al.,
and we were able to reproduce their experimental results with a high degree of correlation.

I. INTRODUCTION

Throughout history, people have devised increasingly
complicated means of communication. From smoke sig-
nals to electrical transmission lines, the goal is the same:
transmit information across physical space. The differ-
ences between various means of communication can be
found in metrics like speed, security, and efficiency. For
example, the rate at which information can be trans-
mitted using smoke signals is certainly slower than using
electrical bits, and since anyone with eyes can observe the
smoke signals, they are also less secure. The concepts of
speed and efficiency were formalized by Claude Shannon
in 1948 in his seminal paper, “A mathematical theory
of communication”.3 In this paper, Shannon proposes a
rigorous definition for information entropy, the amount
of information revealed in a discrete, probabilistic event,
and for metrics like channel capacity, the rate at which
information can be sent over a channel.

The question of security falls under the field of cryp-
tography, which primarily concerns itself with the encod-
ing of information such that it can only be decoded by
the ‘right’ person. The relationship between cryptogra-
phy and information transmitted by a discrete statistical
source, such as a computer, was addressed by Shannon
in a paper a year later, in 1949, titled “Communication
theory of secrecy systems.”4 This paper was the first to
approach the creation of cryptographic algorithms from
the standpoint of information theory. At that point in
the twentieth century, recent developments in semicon-
ductors allowed the digital electronics industry to boom,
rendering Shannon’s ideas on cryptography increasingly
relevant.

By the early 1970s, society had become dependant on
digital systems and the secure transfer of information,
and it was necessary to develop de jure standards for en-
crypting information. The first of such standards, cre-
atively named DES (Data Encryption Standard), was
published in 1975. Since then, many other cryptographic
schemes have been proposed: RSA, AES, and 3DES,
among others. Both DES and AES are symmetric en-
cryption algorithms, meaning if Alice is sending a mes-
sage to Bob, then Alice encrypts the message using the
same key, usually a large number, that Bob then uses

to decrypt the message. Since the encryption algorithms
are quite hard to break—the timescale on which mod-
ern computers can crack modern algorithms is generally
years—the security of the algorithm as a whole rests on
the distribution of this private key. This is where quan-
tum mechanics is helpful.

A. Quantum Key Distribution

One method for securely distributing an encryption
key is to exploit properties of quantum mechanics,
namely that quantum states cannot be copied and are
destroyed once measured. These properties allow two
parties to create a random key, known only to them, such
that any interception of the key produces an effect mea-
sureable by the sender and receiver. The security of the
distribution method relies on the fact that measuring a
quantum system disturbs the state of the system, collaps-
ing it to a single value. If the sender ensures that, prior
to any measurement, the initial state (of the data to be
sent) meets certain criteria, then the receiver can expect
certain statistical properties of the data they receive. As
a quick example, supposed the sender sends the state:

|ψ〉 =
1√
2

(|0〉+ |1〉) (1)

Where |0〉 and |1〉 are two orthogonal states. A mea-
surement of this state yields a 50% chance of measuring
either |0〉 or |1〉. Any eavesdropper who intercepts this
state cannot reproduce it faithfully. If the sender is care-
ful in the states they choose to send, then any eavesdrop-
ping will yield receiving probabilities that deviate from
what’s expected.

B. The B92 Protocol

The B92 protocol, invented in 1992 by Charles Ben-
nett, is an algorithm for quantum key distribution
(QKD).2 The protocol is actually a simplification of the
BB84 QKD protocol, which Bennett had worked on some

2

FIG. 1. The polarization states that are used in the B92 pro-
tocol. Our sender, Alice (blue), uses 0◦ and 45◦ polarization,
while our receiver, Bob (black), uses 90◦ and 135◦ polariza-
tion. Due to this configuration, the bit that Alice sends has
a 25% chance of being measured correctly by Bob, and a 0%
chance of being measured incorrectly. For example, if Alice
sends a 0 and Bob measures on the 90◦ channel, he will not
detect any photons due to orthogonality of the two states. If
he measures on the 135◦ channel, he will have a 50% chance
of detecting a photon (by eq. 1).

years earlier, in 1984.5 The two protocols are fundamen-
tally the same, with the differences being that B92 is eas-
ier to implement but less secure than BB84. The protocol
encodes bits into two non-orthogonal quantum states.

Our sender, Alice, sends her bits one-by-one in the
form of polarized photons; typically, Alice’s polarization
states are 45◦ apart. The polarization state of each pho-
ton is determined by the bit value to be sent—a binary
1 means Alice sends a 0◦ polarized photon, a binary 0
means 90◦. Our receiver, Bob, has a device which mea-
sures photons on a basis that is rotated 90◦ from Alice’s,
as shown in figure 1. In each frame where a photon is sent
by Alice, Bob randomly chooses to measure on either the
90◦ channel (channel 1) or the 135◦ channel (channel 2).
This means that there is a 25% chance that Bob detects a
photon, and if he detects a photon there is a 100% chance
he measured is correctly (assuming the states are truly
orthogonal).

After the transmission of data is complete, Bob tells
Alice—over an insecure channel—which bits he recorded
a photon on. Because the probability of successful mea-
surement is 100%, Alice and Bob now know for certain
a string of bits that they agree on. Suppose, however,
that there was an eavesdropper on the line, Eve, who si-
phoned off some of the photons and read them on her own
photon detector. Assuming Alice only sends one photon
per bit, any photon measured by Eve cannot possibly be
measured by Bob, due to the no-cloning theorem which
states that quantum states cannot be duplicated. Even
if Eve sends a replacement photon to Bob, so that he
doesn’t get suspicious of the missing photons, there is
only a 25% chance that the replacement photon encodes

the information that Alice sent. Therefore, Bob will not
only find that when he and Alice try to send information
to each other, their keys do not match, but he will notice
a drop in his receiving statistics.

C. The Winnow Error Correction Algorithm

Even if there is no eavesdropper on the communica-
tion between Alice and Bob, there is still the chance that
Bob erroneously records a photon. This error can be at-
tributed to stray photons that find their way into Bob’s
detectors (from exterior light sources) or from the fact
that his measurement basis isn’t perfectly perpindicu-
lar to Alice’s sending basis. For example, suppose Alice
sends a binary 1, which corresponds to a 45◦ polarized
photon. Normally, if Bob happens to measure that pho-
ton on his binary 0 basis, which is at 135◦ (see figure
1), there is no chance he detects a photon since 45◦ and
135◦ are orthogonal. However, if his detector is slightly
off, say 130◦, there is a small probability that Bob mea-
sures a binary 0, even though Alice sent a 1.

Lucky for us, there are various classical error correc-
tion techniques we can use to flip erroneous bits. One
of these methods is the Winnow algorithm, proposed by
W. T. Buttler et al. in 2003.1 Essentially, Winnow is
a conditional application of the Hamming error correc-
tion algorithm, which detects errors using blocks of data
called syndromes, shown below in figure 2.

FIG. 2. Top: Alice’s byte of data and the syndrome that she
calculates from it. Middle, in green: how Alice’s syndrome is
calculated. Each of the four syndrome bits (in orange) is the
row sum (modulo 2) of all the bits in which there is an ‘X’
in the corresponding column; e.g. bit 1 is the sum of bits 3,
5, 7, 9, and 11. Bottom: Bob’s received data and syndrome,
calculated in the same way as Alice’s.

The syndromes are N-bit blocks of data that encode
properties of a k-bit block of data, where N and k are
integers that must satisfy the relationship

2N−k ≥ N + 1 (2)

3

For example, in figure 2, Alice has an 8-bit block of
data that she wishes to send to Bob. The smallest value
of N that satisfies equation 2 is 12, so our syndrome is 12
bits long. The extra four bits that are added to Alice’s
data, called redundant bits, are located at positions that
are multiples of two (slots 1, 2, 4, and 8) and are parity
sums of various bits within Alice’s byte. The first redun-
dant bit is the sum (modulo 2) of all the bits in slots
that have a 1 in the 1’s place (odd numbers, in decimal).
Similarly, the second redundant bit is the mod-2 sum of
bits in slots that have a 1 in the 2’s place (2, 3, 6, 7, 10,
11...). The third and fourth redundant bits are calcu-
lated according to the same logic. Note: the redundant
bits do not include themselves in their parity sum.

Instead of sending her raw data, Alice instead sends
her syndrome to Bob, who extracts the relevant byte of
data (we’ll call them the useful bits, from the appropriate
slots. Assuming N is small enough that only one error
occurs (one bit is flipped), we know the following things:

1. If it was a syndrome bit that got flipped, the byte
of relevant information is unaffected.

2. If a useful bit is flipped, Bob will be able to recog-
nize this because the syndrome will not be correctly
calculated.

In order to figure out which bit is the source of the
error, he simply XORs the redundant bits of his syn-
drome (having recalculated it to match the useful bits he
received) with the redundant bits of the syndrome that
Alice sent. For example, in figure 2, Alice has the byte
00111010 and corresponding syndrome 110001101010 (in
this case, the redundant bits are 1100). When she sends
it to Bob, the 6th bit of the syndrome (3rd bit of the
useful byte) gets flipped and Bob receives 00011010 as
the useful byte. When he recalculates his syndrome, he
gets 100100101010 with redundant bits 1010. He XORs
his redundant bits with Alice’s:

1100⊕ 1010→ 0110 (3)

The result, 0110 or 6, in decimal, points us to the fact
that the 6th bit (counting from the right) is the source of
our error. This may seem like a bit of black magic, but
our result can be easily intuited from looking at the green
table in figure 2, and working through the effect that a
single bit flip has on the calculation of the redundant
bits.

While Hamming’s method of error correction increases
the reliability of a channel, it decreases the channel effi-
ciency. In our example, shown in figure 2 and described
above, Alice wishes to send 8 bits to Bob, but to do so
she must send a 12-bit syndrome. This means that if she
was communicating with Bob purely using Hamming’s
algorithm, her channel efficiency—the ratio of useful bits
sent to total bits sent—is 8

12 , or 0.67. Most of the time,
however, the application of Hamming’s algorithm is un-
necessary because there were no errors in transmission.

The Winnow algorithm addresses this problem and in-
creases the channel efficiency by conditionally applying
Hamming’s algorithm. Winnow first does a parity check
of Alice’s data and attaches a parity bit. In the example
above, this means that every time Alice wishes to send
8 bits, she must send 9 bits, with the extra bit indicat-
ing total parity. Bob then calculates the total parity of
the data he receives, and only if it doesn’t match Alice’s
parity does he request her syndrome. If we assume that
0 errors occur 75% of the time, and 1 error occurs the
remaining 25%, then our channel efficiency is:

0.75× (
8

9
) + 0.25× (

8

12
) = 0.83 (4)

This is significantly better than the 0.67 channel effi-
ciency given by a naive application of Hamming’s algo-
rithm. The Winnow algorithm succeeds at increasing the
channel capacity without an increase in error rate when
only zero or one errors occur in a given block of data, but
fails if there are two or more errors.

II. METHODS

A. Setting the Pulse Intensity

In order to make the channel secure, it is necessary
to minimize the probability that Alice sends more than
a single photon per pulse. The reason is that if Alice
sends multiple photons in a pulse (all of which would be
at the same polarization), this opens up the possibility
that Eve intercepts these photons, and by measuring a
number of them, gains certain knowledge of the polariza-
tion state of the photons. If Eve has her measurement
axis aligned 45 degrees from the polarization axis of an
incoming photon, then whether or not she makes a pos-
itive measurement is a Bernoulli random variable with
parameter 1

2 . Therefore, the larger the sample size that
Eve is able to take, the probability that she does not
make a positive measurement decreases. But so long as
Eve makes one positive measurement, she knows the po-
larization of all the photons in a pulse, and can re-send
an exact copy of the original pulse to Bob, without Al-
ice or Bob being aware that she intercepted the message.
The security of the communication channel is therefore
inversely proportional to the average number of photons
per pulse that Alice sends.

Due to randomness involved in the intensity of light
produced by the laser, and the amount of light that makes
it through the attenuators, we will model the number of
photons per pulse as a Poisson random variable n.

Pn̄(n) =
n̄ne−n̄

n!
(5)

Since the detectors at Ch1 and Ch2 only tell us
whether or not there is a measurement made, and not

4

FIG. 3. Schematic diagram of our implementation of the B92 QKD technique. Alice sends a data stream to Bob via a pulsed
laser (in the IR range). The laser pulses are attenuated by crossed polarizers (1 and 2) before being variably polarized to 0◦ or
45◦ by a Pockels cell, which is controlled by Alice. After that, the beam is further attenuated to achieve a single photon per
pulse (on average). The photon is then split, with a 1/2 probability of going in either direction, and passed to either photon
detector 1 or to photon detector 2, having passed through polarizers 3 or 4 respectively. Note: black arrows indicate electrical
connections, while red arrows indicate information sent via the laser beam.

how many measurements were made, we can only mea-
sure the probability that we get a zero count, which is

Pn̄(0) = e−n̄ (6)

And the probability that we get a non-zero count is

Pn̄(n > 0) = 1− e−n̄ (7)

From the attenuation of light when passing through
crossed polarizers, we can deduce that

n̄ = n0 cos2(φ1 − φ2) (8)

Where n0 is a background pulse intensity determined
by the laser intensity, the angle between the first polar-
izer and the polarization axis of the laser beam, and the
attenuator. φ1−φ2 is the angle between Alice’s polarizers
(polarizers 1 and 2 in figure 3). By adjusting the angle
between Alice’s polarizers, we were able to fine tune the
number of photons per pulse.

When Bob receives a single photon, there is a 25%
chance that he will detect it. Therefore, for the average
number of photons that Bob receives to be one, we want
the proportion of times when a photon is detected at
Bob’s end to be 0.25.

Pn̄(n > 0) = 1− e−n̄ = 0.25 (9)

To calibrate our apparatus, we sent 5000 pulses from
Alice to Bob and measured the number of times that

Bob detected a photon on either channel 1 or channel 2.
We found that an angle of 54◦ between polarizer 1 and
polarizer 2 yielded 1250 ± 50 detected photons out of a
total of 5000 sent photons, which gives the required ratio
of 0.25.

B. Implementing B92

If B92 were to be implemented in real life, Alice would
have one computer, Bob would have another, and they
would communicate solely through a secure laser channel.
In our case however, space and resources are limited, so
we implemented B92 using a single computer, functioning
as both Alice and Bob and sending information to itself,
as shown in figure 3.

Essentially, the “Alice” half of the computer randomly
generates a binary string; in practice, this is actually a
succession of 8-bit sequences. For each bit, Alice pulses
an infrared laser to generate packets of photons, with
each photon in a packet encoding that one bit. The pack-
ets are passed through a pair of cross polarizers in order
to reduce the average number of photons per packet, as
described in the previous section. Next, the photon pack-
ets are conditionally polarized using a Pockels cell, which
polarizes them in two passes (22.5◦ per pass). Finally, Al-
ice passes the packet through a 10−9 attenuator so that
only a single photon remains. She then “sends” this pho-
ton to Bob.

When Bob receives the photon, he passes it though a
beam splitter which either sends the photon to a mea-
surement device polarized 90◦ or to one polarized 315◦.
This effectively chooses at random a polarization basis
on which to measure the photon. In reality, our polar-

5

ized measurement devices are polarized lenses followed by
photon detectors. In our experimental set up, we called
channel 1 the 90◦ lens (binary 0) and channel 2 the 315◦

lens (binary 1).
In order to measure the relationship between the post-

error-correction error rate, pon, and the original error
rate, p0, it was necessary to artificially introduce errors
into our system. We achieved this by tuning Bob’s polar-
ized lenses so that they weren’t completely orthogonal.
The less orthogonal his lenses were, the higher the error
rate. Conveniently, we found that p0 varied linearly with
90− φ, where φ is the angle between Bob’s polarizers.

C. Implementing the Winnow Algorithm

Due to the fact that our QKD algorithm was imple-
mented on a single computer, our implementation of
the Winnow algorithm differed slightly from what is de-
scribed in the “Methods” section. Unlike in a legitimate
B92 set-up, where Alice’s and Bob’s computers could
not share information aside from the secure channel, we
were able to immediately compare the received data with
the sent data. This allowed us to cheat a little bit in
computing the channel efficiency. For each transmission
of N bytes, we had a running tally of a variable called
wastedBits, which kept track of every non-useful bit that
was sent. Instead of sending the entire 12-bit syndrome
each time, we simply transmitted the raw bytes and then
checked the parity afterwards. There were two cases:

1. If the parity matched, then 1 was added to wasted-
Bits (indicated the single parity bit)

2. If the parity didn’t match, then the 4-bit abbrevi-
ated syndrome was computed (the orange bits in
figure 2), and 4 was added to wastedBits

Every time that the parity didn’t match, our algorithm
corrected the error identified by the syndrome. Then
each 8-bit block was checked against the byte that Alice
originally sent. For each transmission, our algorithm kept
a running tally of the number of erroneous bits. At the
end, we divided this number by the number of useful bits
sent (total bits sent minus wasted bits) to get our error
rate. To get our channel capacity, we divided the number
of useful bits sent by the number of total bits sent.

III. RESULTS

p0 is the error rate without the Winnow error correc-
tion algorithm running, while pon is the error rate with
Winnow turned on. Both are calculated the same way:

pon/0 =
no. errors

no. useful bits
(10)

FIG. 4. Showing the ratio between the error rate after er-
ror correction (pon) and the background error rate (p0), ver-
sus the background error rate. The last data point (0.347 ±
0.004, 1.00 ± 0.02) is the lowest (and only) value of p0 which
we measured for which the Winnow correction algorithm in-
creased the number of errors over the background error rate.
This is in line with the results in Fig. 1. in Buttler et. al.1

For each data point, We measured p0 five times, so the
uncertainty in p0 was calculated as the standard devia-
tion of these five values. Similarly, the uncertainty in pon
is the standard deviation of the five measured values of
pon. Since we did not measure pon and p0 on the same
tests, the uncertainty in pon/p0 is found by propagating
the error of each pon and p0 in quadrature.

δ(pon

p0
)

pon

p0

=

√
(
δpon
pon

)2 + (
δp0

p0
)2 (11)

where p0 and pon are the average of the five measured
values and δp0 and δpon are the standard deviations of
these five measured values.

The expected functional form of the relationship be-
tween pon and p0 is not known, so there is little use in
fitting a curve through these data points. In Buttler et.
al.1 a numerical approach is used to plot the theoretical
relationship between pon/p0 and p0 for a range of values
(Fig. 1 in that paper). To verify that our results are
consistent with the theory, we have plotted in Fig 5 the
theoretical relationship between pon/p0 and p0 and the
data points that we measured. We can see that the the-
oretical curve passes through all of the error bars, indi-
cating that our data supports the theoretical predictions
of Buttler et. al.

We also measured the relationship between the channel
efficiency, C, and the underlying error rate (p0). We
defined channel efficiency as

C = 1− no. bits discarded

total no. bits sent
(12)

where no. bits discarded is the number of bits dis-
carded by the error correction algorithm, and the remain-

6

FIG. 5. Experimental measurements plotted alongside the
theoretical curve of pon/p0 against p0. The black N = 8 curve
is the relevant comparison for our experiment. As Buttler et.
al.1 only plotted this relationship for pon/p0 > 0.5, only part
of our data is shown. We can see that the theoretical curve
passes through all of our measurement error bars, indicating
that the experimental data is in line with theoretical predic-
tions, and the chi-squared test would yield χ2 ≈ 1. Since we
don’t know the functional form of the theoretical curve, we
cannot precisely perform the chi-squared test for this fit.

FIG. 6. Showing the relationship between the channel effi-
ciency and the underlying error rate p0. As expected, the
higher the underlying error rate, the greater the number of
bits discarded by the error correction algorithm, and so the
lower the channel efficiency.

ing bits may be either correct or in error. This value is
the same as the wastedBits variable described in section
2.C, “Implementing the Winnow Algorithm.” It is useful
to compare figure 4 and figure 6 to determine simulta-

neously how accurate and how efficient the Winnow al-
gorithm makes our channel. The error bars are simply
calculated as the standard deviation of the five measured
values of C and p0.

IV. CONCLUSION

The data presented here validate the theoretical pre-
dictions of the Winnow paper. Our measured error rate,
shown in figure 4, matches the data presented by Buttler
et al. within error bars. In figure 5, we overlay our data
onto the Winnow data and see that they closely align for
N = 8, which was the size of data that we tested with.
To further verify the predictions of the Winnow paper,
future researchers might run our algorithm with N = 16
and N = 32 to test those curves as well. They also might
generate artificial error rates p0 exceeding 0.35 so that
the remainder of the N = 8 curve can be verified. It
is important to note that although the error correction
techniques presented here remove the majority of errors,
an encryption free must be completely free of errors to be
of any use. In order to achieve that, one can repeatedly
shuffle the bits that are sent and reapply the Winnow
algorithm. One can also adjust the block size (to N = 16
or N = 32) and reapply Winnow to obtain an error-free
key.

In addition to measuring the error rates achieved by
Winnow, we measured the relationship between error
rate and channel efficiency, which we defined as the ra-
tio of useful information sent to total information sent.
We found that as the underlying error rate p0 increases,
the channel efficiency C drops sharply from 0.85 before
leveling off at 0.77. However, this metric is slightly mis-
leading, because when calculating the channel efficiency,
the algorithm does not distinguish between useful bits
that are correct and useful bits that are wrong. This as
well suggests a further point of research.

V. REFERENCES

1W. T. Buttler, S. K. Lamoreaux, J. R. Torgerson, G. Nickel,
C. Donahue, and C. G. Peterson, “Fast, efficient error reconcili-
ation for quantum cryptography,” Physical Review A 67, 052303
(2003).

2C. H. Bennett, “Quantum cryptography using any two nonorthog-
onal states,” Physical review letters 68, 3121 (1992).

3C. E. Shannon, “A mathematical theory of communication,” Bell
system technical journal 27, 379–423 (1948).

4C. E. Shannon, “Communication theory of secrecy systems,” Bell
system technical journal 28, 656–715 (1949).

5C. BENNETT, “Quantum crytography,” in Proc. IEEE Int. Conf.
Computers, Systems, and Signal Processing, Bangalore, India,
1984 (1984) pp. 175–179.

